Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Immunobiology ; 228(2): 152343, 2023 03.
Article in English | MEDLINE | ID: covidwho-2210509

ABSTRACT

INTRODUCTION: It has been demonstrated that the patients with severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) suffer from severe inflammation. Due to the ethnics, the immune responses may be different. Additionally, microRNAs may alter immune responses in the patients. The current study was aimed to evaluate the expression of T helper subsets-related transcription factors, some T helper 17 (Th17) products, and two microRNAs, including miR-155 and miR-194, in the Iranian hospitalized patients. METHODS: In this study, T-box expressed in T cells (T-bet), GATA binding protein 3, The retinoid orphan receptor gamma t (RORγt), forkhead box P3 (FOXP3), interleukin (IL)-17A, IL-8, and CC ligand 20 (CCL20) mRNA levels and, miR-155 and miR-194 levels were evaluated in 70 patients suffered from severe coronavirus disease 2019 (COVID-19) and 70 healthy subjects using Real-Time qPCR technique. RESULTS: The findings showed that RORγt, and FOXP3 mRNA levels were significantly increased, while IL-17A, IL-8, and CCL20 mRNA levels were significantly decreased in the hospitalized SARS-CoV-2 infected patients. Although the levels of miR-155 and miR-194 were not different between groups, miR-194 has negative and positive correlations with RORγt and IL-17A in the Iranian healthy controls. CONCLUSION: This study reports although RORγt was up-regulated, IL-17A, IL-8, and CCL20 mRNA levels were significantly decreased in the hospitalized SARS-CoV-2 infected patients. It may be concluded that up-regulation of FOXP3, via development of T regulatory lymphocytes suppresses Th17 functions and neutralizes Th17 activities. MiR-194 may play crucial roles in regulation of RORγt and IL-17A expression in healthy people, the phenomenon that is disrupted in the severe SARS-CoV-2 infected patients.


Subject(s)
COVID-19 , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Humans , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Forkhead Transcription Factors/metabolism , Interleukin-17/metabolism , Interleukin-8/metabolism , Iran , MicroRNAs/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , RNA, Messenger/genetics , SARS-CoV-2/genetics
2.
Cells ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090009

ABSTRACT

Low back pain is a clinically highly relevant musculoskeletal burden and is associated with inflammatory as well as degenerative processes of the intervertebral disc. However, the pathophysiology and cellular pathways contributing to this devastating condition are still poorly understood. Based on previous evidence, we hypothesize that tissue renin-angiotensin system (tRAS) components, including the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), are present in human nucleus pulposus (NP) cells and associated with inflammatory and degenerative processes. Experiments were performed with NP cells from four human donors. The existence of angiotensin II, angiotensin II type 1 receptor (AGTR1), AGTR2, MAS-receptor (MasR), and ACE2 in human NP cells was validated with immunofluorescent staining and gene expression analysis. Hereafter, the cell viability was assessed after adding agonists and antagonists of the target receptors as well as angiotensin II in different concentrations for up to 48 h of exposure. A TNF-α-induced inflammatory in vitro model was employed to assess the impact of angiotensin II addition and the stimulation or inhibition of the tRAS receptors on inflammation, tissue remodeling, expression of tRAS markers, and the release of nitric oxide (NO) into the medium. Furthermore, protein levels of IL-6, IL-8, IL-10, and intracellular as well as secreted angiotensin II were assessed after exposing the cells to the substances, and inducible nitric oxide synthase (iNOS) levels were evaluated by utilizing Western blot. The existence of tRAS receptors and angiotensin II were validated in human NP cells. The addition of angiotensin II only showed a mild impact on gene expression markers. However, there was a significant increase in NO secreted by the cells. The gene expression ratios of pro-inflammatory/anti-inflammatory cytokines IL-6/IL-10, IL-8/IL-10, and TNF-α/IL-10 were positively correlated with the AGTR1/AGTR2 and AGTR1/MAS1 ratios, respectively. The stimulation of the AGTR2 MAS-receptor and the inhibition of the AGTR1 receptor revealed beneficial effects on the gene expression of inflammatory and tissue remodeling markers. This finding was also present at the protein level. The current data showed that tRAS components are expressed in human NP cells and are associated with inflammatory and degenerative processes. Further characterization of the associated pathways is warranted. The findings indicate that tRAS modulation might be a novel therapeutic approach to intervertebral disc disease.


Subject(s)
Nucleus Pulposus , Renin-Angiotensin System , Humans , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Vet Microbiol ; 274: 109553, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2076830

ABSTRACT

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and interleukin-6 (IL-6). Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, we found that interleukin-8 (IL-8) was upregulated by PDCoV infection. We then demonstrated that PDCoV E protein induced IL-8 production and that the TM domain and the C-terminal domain of the E protein were important for IL-8 production. Subsequently, we showed here that deleting the AP-1 and NF-κB binding motif in porcine IL-8 promoter abrogated its activation, suggesting that IL-8 expression was dependent on AP-1 and NF-κB. Furthermore, PDCoV E induced IL-8 production, which was also dependent on the NF-κB pathway through activating nuclear factor p65 phosphorylation and NF-κB inhibitor alpha (IκBα) protein phosphorylation, as well as inducing the nuclear translocation of p65, eventually resulting in the promotion of IL-8 production. PDCoV E also activated c-fos and c-jun, both of which are members of the AP-1 family. These findings provide new insights into the molecular mechanisms of PDCoV-induced IL-8 production and help us further understand the pathogenesis of PDCoV infection.


Subject(s)
COVID-19 , Swine Diseases , Swine , Animals , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha , Interleukin-6/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , SARS-CoV-2 , COVID-19/veterinary , Cytokines , Antiviral Agents/pharmacology
4.
Front Immunol ; 13: 954391, 2022.
Article in English | MEDLINE | ID: covidwho-2039677

ABSTRACT

Erroneous immune responses in COVID-19 could have detrimental effects, which makes investigation of immune network underlying COVID-19 pathogenesis a requisite. This study aimed to investigate COVID-19 related alterations within the frame of innate and adaptive immunity. Thirty-four patients clinically diagnosed with mild, moderate and severe COVID-19 disease were enrolled in this study. Decreased ILC1 and increased ILC2 subsets were detected in mild and moderate patients compared to healthy controls. NK cell subsets and cytotoxic capacity of NK cells were decreased in severe patients. Moreover, CD3+ T cells were reduced in severe patients and a negative correlation was found between CD3+ T cells and D-dimer levels. Likewise, moderate and severe patients showed diminished CD3+CD8+ T cells. Unlike T and NK cells, plasmablast and plasma cells were elevated in patients and IgG and IgA levels were particularly increased in severe patients. Severe patients also showed elevated serum levels of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-8, reduced intracellular IFN-γ and increased intracellular IL-10 levels. Our findings emphasize that SARS-CoV-2 infection significantly alters immune responses and innate and acquired immunity are differentially modulated in line with the clinical severity of the disease. Elevation of IL-10 levels in NK cells and reduction of CD3+ and CD8+ T cells in severe patients might be considered as a protective response against the harmful effect of cytokine storm seen in COVID-19.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Humans , Immunity, Innate , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Killer Cells, Natural , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism
5.
Int Immunopharmacol ; 111: 109054, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1983253

ABSTRACT

The objective was to evaluate effects of niacin on the intestinal epithelial barrier, intestinal immunity, and microbial community in weaned piglets challenged by Porcine Deltacoronavirus (PDCoV). In this study, fifteen weaned piglets were randomly assigned to 1 of 3 groups, (1) control group, normal diet; (2) PDCoV group, infected with 1 × 107 TCID50 of the PDCoV CHN-HN-17 strain by oral administration; (3) NA + PDCoV group, infected with 1 × 107 TCID50 of the PDCoV CHN-HN-17 strain by oral administration following administration of 40 mg of niacin for three days. The results showed that PDCoV infection induced diarrhea and other clinical symptoms with intestinal villi shedding and atrophy in weaned piglets. Niacin alleviated the symptoms of diarrhea and intestinal damage of PDCoV-infected weaned piglets. Additionally, PDCoV increased (P < 0.05) the mRNA expression of tight junction proteins [zonula occludens-1 (ZO-1) and Claudin] and antimicrobial peptides [porcine ß defensin 1 (pBD1), pBD2, proline-arginine rich 39-amino acid peptide (PR39) and protegrin 1-5 (PG1-5) in the jejunum and ileum of weaned piglets, while niacin increased (P < 0.05) the expression of PG1-5 compared with PDCoV. PDCoV increased (P < 0.05) the contents of serum interleukin-1ß (IL-1ß), IL-8 and intestinal IL-8, and up-regulated the mRNA expression of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6, IL-10, IL-12, and IL-18 in ileum of weaned piglets compared with control. However, niacin decreased (P < 0.05) the contents of serum IL-1ß, IL-6 and intestinal IL-10 and IL-8, and also reduced (P < 0.05) the mRNA expression of ileal TNF-α, IL-10 and IL-12 in the PDCoV-infected piglets. Compared with control, PDCoV up-regulated (P < 0.05) the mRNA expression of key genes related to innate immune and antiviral molecules [toll-like receptor 4 (TLR4), NOD1, NOD2, DDX58, CCL2, STAT2, Mx1, IFN-γ, and protein kinase R (PKR) in the ileum of weaned piglets. Niacin decreased (P < 0.05) the mRNA expression of NOD1, NOD2, STAT2, IFN-γ, and PKR in PDCoV-infected weaned piglets. Moreover, the mRNA expression of IL-6 decreased (P < 0.05) and 2'-5'-oligoadenylate synthetase (OAS), IFN-α, and PKR increased (P < 0.05) in PDCoV-infected IPEC-J2 cells treated with niacin in vitro. Furthermore, niacin decreased (P < 0.05) the elevation of protein expression including inducible NOS (iNOS), nuclear factor-κB (NF-κB p65), inhibitor kappa B (IKKß), histone deacetylase [Sirtuin 1 (SIRT1) and histone deacetylase 7 (HDAC7) and phosphorylation of histone H3 at serine s10 (pH3s10) in the ileum of PDCoV-infected piglets, and increased (P < 0.05) the expression of G protein-coupled receptor (GPR109A). PDCoV disrupted the composition and structure of microflora in the colon of weaned piglets, and reduced the relative abundance of the beneficial bacteria Spirobacterium, but niacin could improve the intestinal microbial flora of the PDCoV-infected piglets associated with increasing the relative abundance of Lactobacillus. Overall, niacin could alleviate diarrhea, intestinal barrier damages, intestinal immune response and colonic microflora disfunction in PDCoV-infected weaned piglets.


Subject(s)
Microbiota , Niacin , Animals , Diarrhea/metabolism , Histone Deacetylases/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Intestinal Mucosa/metabolism , Niacin/pharmacology , RNA, Messenger/metabolism , Swine , Tumor Necrosis Factor-alpha/metabolism
6.
J Leukoc Biol ; 112(5): 1053-1063, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1955915

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.


Subject(s)
COVID-19 , Humans , Monocytes , SARS-CoV-2 , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Myeloid Cells , Hospitalization , Tetraspanin 29/metabolism , Post-Acute COVID-19 Syndrome
7.
Ideggyogy Sz ; 75(5-06): 191-198, 2022 May 30.
Article in English | MEDLINE | ID: covidwho-1918217

ABSTRACT

Background and purpose: Prevalence of acute ische-mic stroke (AIS) is increased in patients with coronavirus disease 2019 (COVID-19). A proposed hypothesis is increased virus-induced propensity to hypercoagulation resulting in arterial thrombosis. Our aim was to provide evidence regarding the involvement of neutrophil extracellular trap (NET) formation (NETosis) in COVID-19 related AIS. Methods: Twenty-six consecutively enrolled COVID-19+ pneumonia patients with AIS, 32 COVID-19+ pneumonia patients without AIS and 24 AIS patients without COVID-19 infection were included to the study. Clinical characteristics of recruited patients were collected. Serum levels of citrullinated histone H3 (H3Cit; a factor of NETosis), IL-8 and C5a (mediators associated with NETosis) were measured by ELISA (enzyme-linked immunosorbent assay). Results: H3Cit levels were significantly higher in COVID-19+ AIS patients, whereas all study groups showed comparable IL-8 and C5a levels. There were no significant differences among etiological subgroups of AIS patients with or without COVID-19. AIS patients with COVID-19 showed relatively increased white blood cell, lymphocyte, neutrophil, D-dimer, C-reactive protein and procalcitonin levels than control groups. H3Cit levels did not correlate with clinical/prognostic features and inflammation parameters. H3Cit and IL-8 levels were correlated in COVID-19 patients without stroke but not in COVID-19 positive or negative AIS patients. Conclusion: Increased levels of inflammation parameters and H3Cit in COVID-19 related AIS suggest that NETosis may cause susceptibility to arterial thrombosis. However, H3Cit levels do not correlate with clinical severity measures and inflammation parameters diminishing the prognostic biomarker value of NETosis factors. Moreover, the link between IL-8 and NETosis appears to be abolished in AIS.


Subject(s)
COVID-19 , Ischemic Stroke , Pneumonia , Stroke , Thrombosis , COVID-19/complications , Histones/metabolism , Humans , Inflammation , Interleukin-8/metabolism , Stroke/etiology , Thrombosis/etiology
8.
Biomed Res Int ; 2022: 2743046, 2022.
Article in English | MEDLINE | ID: covidwho-1891948

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a novel infectious respiratory disease called COVID-19, which is threatening public health worldwide. SARS-CoV-2 spike proteins connect to the angiotensin converting enzyme 2 (ACE2) receptor through the receptor binding domain and are then activated by the transmembrane protease serine subtype 2 (TMPRSS2). The ACE2 receptor is highly expressed in human nasal epithelial cells. Nasal ciliated cells are primary targets for SARS-CoV-2 replication. However, the effect of SARS-CoV-2 on the upper respiratory tract remains unknown, thus leading to the purpose of our study. We investigate the effects of SARS-CoV-2 on cytokines and mucin expression in human nasal epithelial cells. Methods: We investigated the effects of the SARS-CoV-2 spike protein receptor binding domain (RBD) on cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression via real-time PCR, ELISA, periodic acid-Schiff (PAS) staining, and immunofluorescence staining in cultured human nasal epithelial cells. Results: The mRNA expression and protein production of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B were increased by SARS-CoV-2 spike protein RBD. ACE2 receptor inhibitor suppressed the expression of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B induced by SARS-CoV-2 spike protein RBD. Conclusions: SARS-CoV-2 induced cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression through the ACE 2 receptor in human nasal epithelial cells. Therefore, ACE2 receptor inhibitors can be an effective therapeutic option for SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus
9.
Arch Virol ; 166(8): 2285-2289, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1826502

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered multipotent progenitors with the capacity to differentiate into mesoderm-like cells in many species. The immunosuppressive properties of MSCs are important for downregulating inflammatory responses. Turkey coronavirus (TCoV) is the etiological agent of a poult mortality syndrome that affects intestinal epithelial cells. In this study, poult MSCs were isolated, characterized, and infected with TCoV after in vitro culture. The poult-derived MSCs showed fibroblast-like morphology and the ability to undergo differentiation into mesodermal-derived cells and to support virus replication. Infection with TCoV resulted in cytopathic effects and the loss of cell viability. TCoV antigens and new viral progeny were detected at high levels, as were transcripts of the pro-inflammatory factors INFγ, IL-6, and IL-8. These findings suggest that the cytokine storm phenomenon is not restricted to one genus of the family Coronaviridae and that MSCs cannot always balance the process.


Subject(s)
Coronavirus, Turkey/physiology , Cytokines/metabolism , Virus Replication , Animals , Cell Differentiation , Cell Survival , Cytopathogenic Effect, Viral , Interferon-gamma/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Turkeys , Up-Regulation
10.
Oxid Med Cell Longev ; 2022: 9366494, 2022.
Article in English | MEDLINE | ID: covidwho-1807713

ABSTRACT

Trehalose, a natural disaccharide, is synthesized by many organisms when cells are exposed to stressful stimuli. On the basis of its ability to modulate autophagy, trehalose has been considered an innovative drug for ameliorating many diseases, but its molecular mechanism is not well described. Previous findings demonstrated that trehalose plays a photoprotective role against ultraviolet (UV) B-induced damage through autophagy induction in keratinocytes. In this study, coimmunoprecipitation, label-free quantitative proteomic and parallel reaction monitoring, and western blot analysis demonstrated that trehalose promotes the interaction between tissue inhibitor of metalloproteinase (TIMP) 3 and Beclin1. Western blot and immunofluorescence staining analysis suggested that trehalose increases ATG9A localization in lysosomes and decreases its localization in the endoplasmic reticulum. Furthermore, in the presence or absence of UVB radiation, we evaluated the influence of TIMP3 and ATG9A small interfering RNA (siRNA) on the effect of trehalose on autophagy, cell death, migration, or interleukin-8 expression in keratinocytes, including HaCaT, A431, and human epidermal keratinocytes. The results revealed that in HaCaT cells, TIMP3 and ATG9A siRNA resulted in attenuation of trehalose-induced autophagy and inhibited cell death. In A431 cells, TIMP3 and ATG9A siRNA led to attenuation of trehalose-induced autophagy and cell death and inhibited migration. In human epidermal keratinocytes, trehalose-induced autophagy and inhibition of the interleukin-8 expression were blocked by ATG9A but not TIMP3 siRNA. In addition, the results of quantitative real-time PCR and immunohistochemistry analysis demonstrated the abnormal expression of TIMP3 and ATG9A in actinic keratosis and cutaneous squamous cell carcinoma skin tissues. These findings suggest the protective effects of trehalose in normal keratinocytes and its inhibitory effects on cancerous keratinocytes, possibly mediated by activation of autophagy and regulation of TIMP3 and ATG9A, providing the mechanistic basis for the potential use of trehalose in the prevention or treatment of UVB-induced skin diseases.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Autophagy , Autophagy-Related Proteins/metabolism , Carcinoma, Squamous Cell/pathology , Humans , Interleukin-8/metabolism , Keratinocytes/metabolism , Membrane Proteins/metabolism , Proteomics , RNA, Small Interfering/metabolism , Skin Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tissue Inhibitor of Metalloproteinase-3/pharmacology , Trehalose/pharmacology , Ultraviolet Rays/adverse effects , Vesicular Transport Proteins/metabolism
11.
PLoS Pathog ; 18(4): e1010468, 2022 04.
Article in English | MEDLINE | ID: covidwho-1779781

ABSTRACT

An overreactive inflammatory response and coagulopathy are observed in patients with severe form of COVID-19. Since increased levels of D-dimer (DD) are associated with coagulopathy in COVID-19, we explored whether DD contributes to the aberrant cytokine responses. Here we show that treatment of healthy human monocytes with DD induced a dose dependent increase in production of pyrogenic mediator, Prostaglandin E2 (PGE2) and inflammatory cytokines, IL-6 and IL-8. The DD-induced PGE2 and inflammatory cytokines were enhanced significantly by co-treatment with immune complexes (IC) of SARS CoV-2 recombinant S protein or of pseudovirus containing SARS CoV-2 S protein (PVCoV-2) coated with spike-specific chimeric monoclonal antibody (MAb) containing mouse variable and human Fc regions. The production of PGE2 and cytokines in monocytes activated with DD and ICs was sensitive to the inhibitors of ß2 integrin and FcγRIIa, and to the inhibitors of calcium signaling, Mitogen-Activated Protein Kinase (MAPK) pathway, and tyrosine-protein kinase. Importantly, strong increase in PGE2 and in IL-6/IL-8/IL-1ß cytokines was observed in monocytes activated with DD in the presence of IC of PVCoV-2 coated with plasma from hospitalized COVID-19 patients but not from healthy donors. The IC of PVCoV-2 with convalescent plasma induced much lower levels of PGE2 and cytokines compared with plasma from hospitalized COVID-19 patients. PGE2 and IL-6/IL-8 cytokines produced in monocytes activated with plasma-containing IC, correlated well with the levels of spike binding antibodies and not with neutralizing antibody titers. Our study suggests that a combination of high levels of DD and high titers of spike-binding antibodies that can form IC with SARS CoV-2 viral particles might accelerate the inflammatory status of lung infiltrating monocytes leading to increased lung pathology in patients with severe form of COVID-19.


Subject(s)
COVID-19 , Monocytes , Animals , Antigen-Antibody Complex , COVID-19/therapy , Cytokines/metabolism , Dinoprostone/metabolism , Fibrin Fibrinogen Degradation Products , Humans , Immunization, Passive , Immunologic Factors/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mice , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
12.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776254

ABSTRACT

In the novel pandemic of Coronavirus Disease 2019, high levels of pro-inflammatory cytokines lead to endothelial activation and dysfunction, promoting a pro-coagulative state, thrombotic events, and microvasculature injuries. The aim of the present work was to investigate the effect of SARS-CoV-2 on pro-inflammatory cytokines, tissue factor, and chemokine release, with Human Microvascular Endothelial Cells (HMEC-1). ACE2 receptor expression was evaluated by western blot analysis. SARS-CoV-2 infection was assessed by one-step RT-PCR until 7 days post-infection (p.i.), and by Transmission Electron Microscopy (TEM). IL-6, TNF-α, IL-8, IFN-α, and hTF mRNA expression levels were detected by RT-PCR, while cytokine release was evaluated by ELISA. HMEC-1 expressed ACE2 receptor and SARS-CoV-2 infection showed a constant viral load. TEM analysis showed virions localized in the cytoplasm. Expression of IL-6 at 24 h and IFN-α mRNA at 24 h and 48 h p.i. was higher in infected than uninfected HMEC-1 (p < 0.05). IL-6 levels were significantly higher in supernatants from infected HMEC-1 (p < 0.001) at 24 h, 48 h, and 72 h p.i., while IL-8 levels were significantly lower at 24 h p.i. (p < 0.001). These data indicate that in vitro microvascular endothelial cells are susceptible to SARS-CoV-2 infection but slightly contribute to viral amplification. However, SARS-CoV-2 infection might trigger the increase of pro-inflammatory mediators.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Chemokines/genetics , Chemokines/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2
13.
J Reprod Immunol ; 151: 103501, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763858

ABSTRACT

While COVID-19 infection during pregnancy is common, fetal transmission is rare, suggesting that intrauterine mechanisms form an effective blockade against SARS-CoV-2. Key among these is the decidual immune environment of the placenta. We hypothesize that decidual leukocytes are altered by maternal SARS-CoV-2 infection in pregnancy and that this decidual immune response is shaped by the timing of infection during gestation. To address this hypothesis, we collected decidua basalis tissues at delivery from women with symptomatic COVID-19 during second (2nd Tri COVID, n = 8) or third trimester (3rd Tri COVID, n = 8) and SARS-CoV-2-negative controls (Control, n = 8). Decidual natural killer (NK) cells, macrophages and T cells were evaluated using quantitative microscopy, and pro- and anti-inflammatory cytokine mRNA expression was evaluated using quantitative reverse transcriptase PCR (qRT-PCR). When compared with the Control group, decidual tissues from 3rd Tri COVID exhibited significantly increased macrophages, NK cells and T cells, whereas 2nd Tri COVID only had significantly increased T cells. In evaluating decidual cytokine expression, we noted that IL-6, IL-8, IL-10 and TNF-α were significantly correlated with macrophage cell abundance. However, in 2nd Tri COVID tissues, there was significant downregulation of IL-6, IL-8, IL-10, and TNF-α. Taken together, these results suggest innate and adaptive immune responses are present at the maternal-fetal interface in maternal SARS-CoV-2 infections late in pregnancy, and that infections earlier in pregnancy show evidence of a resolving immune response. Further studies are warranted to characterize the full scope of intrauterine immune responses in pregnancies affected by maternal COVID-19.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Cytokines/metabolism , Decidua , Female , Humans , Immunity , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Pregnancy , Pregnancy Complications, Infectious/metabolism , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism
14.
J Virol ; 96(5): e0208621, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736026

ABSTRACT

Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.


Subject(s)
Coronavirus Infections/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adenine/metabolism , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gene Expression Regulation , Humans , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-6/genetics , Interleukin-8/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Transcriptional Activation , Up-Regulation , Uridine/metabolism , Vero Cells
15.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1631216

ABSTRACT

Angiotensin II receptor type 1 (AT1R) and endothelin-1 receptor type A (ETAR) are G-protein-coupled receptors (GPCRs) expressed on the surface of a great variety of cells: immune cells, vascular smooth cells, endothelial cells, and fibroblasts express ETAR and AT1R, which are activated by endothelin 1 (ET1) and angiotensin II (AngII), respectively. Certain autoantibodies are specific for these receptors and can regulate their function, thus being known as functional autoantibodies. The function of these antibodies is similar to that of natural ligands, and it involves not only vasoconstriction, but also the secretion of proinflammatory cytokines (such as interleukin-6 (IL6), IL8 and TNF-α), collagen production by fibroblasts, and reactive oxygen species (ROS) release by fibroblasts and neutrophils. The role of autoantibodies against AT1R and ETAR (AT1R-AAs and ETAR-AAs, respectively) is well described in the pathogenesis of many medical conditions (e.g., systemic sclerosis (SSc) and SSc-associated pulmonary hypertension, cystic fibrosis, and allograft dysfunction), but their implications in cardiovascular diseases are still unclear. This review summarizes the current evidence regarding the effects of AT1R-AAs and ETAR-AAs in cardiovascular pathologies, highlighting their roles in heart transplantation and mechanical circulatory support, preeclampsia, and acute coronary syndromes.


Subject(s)
Autoantibodies/metabolism , Cardiovascular Diseases/immunology , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Collagen/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Sci Rep ; 11(1): 20793, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1479813

ABSTRACT

In Europe, multiple waves of infections with SARS-CoV-2 (COVID-19) have been observed. Here, we have investigated whether common patterns of cytokines could be detected in individuals with mild and severe forms of COVID-19 in two pandemic waves, and whether machine learning approach could be useful to identify the best predictors. An increasing trend of multiple cytokines was observed in patients with mild or severe/critical symptoms of COVID-19, compared with healthy volunteers. Linear Discriminant Analysis (LDA) clearly recognized the three groups based on cytokine patterns. Classification and Regression Tree (CART) further indicated that IL-6 discriminated controls and COVID-19 patients, whilst IL-8 defined disease severity. During the second wave of pandemics, a less intense cytokine storm was observed, as compared with the first. IL-6 was the most robust predictor of infection and discriminated moderate COVID-19 patients from healthy controls, regardless of epidemic peak curve. Thus, serum cytokine patterns provide biomarkers useful for COVID-19 diagnosis and prognosis. Further definition of individual cytokines may allow to envision novel therapeutic options and pave the way to set up innovative diagnostic tools.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Cytokines/blood , Aged , Biomarkers/blood , COVID-19 Testing , Case-Control Studies , Cytokines/metabolism , Discriminant Analysis , Female , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Italy/epidemiology , Machine Learning , Male , Middle Aged , Pandemics , Regression Analysis , SARS-CoV-2
17.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1435144

ABSTRACT

Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Interleukin-8/metabolism , Lung/immunology , Neutrophils/immunology , SARS-CoV-2 , Thrombosis/etiology , Animals , COVID-19/complications , COVID-19/pathology , Humans , Lung/pathology , Mice , Neutrophil Activation , Neutrophils/pathology , Phenotype , Thrombosis/pathology
18.
Int Immunopharmacol ; 101(Pt A): 108192, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1433412

ABSTRACT

The mounting evidence regarding the pathogenesis of COVID-19 indicated that the cytokine storm has an axial role in the severity of this disease, which may lead to thrombotic complications, acute respiratory distress syndrome (ARDS), and myocardial damage, among other consequences. It has recently been demonstrated that statins are known to have anti-viral, anti-inflammatory, anti-thrombotic, and immunomodulatory features; however, their advantage has not been evaluated in COVID-19. This study aimed to investigate the protective effects of lovastatin in intensive care unit (ICU) patients with COVID-19. The case-control study consists of 284 ICU patients, which classified into three groups as follows: 1) the patients who no received lovastatin as a control (92 patients), 2) patients received 20 mg per day lovastatin (99 patients), and 3) patients received 40 mg per day lovastatin (93 patients). Each group's demographic and clinical parameters, along with CRP, interleukin (IL)-6, IL-8 levels, and mortality rate, were studied in three-time points. The results showed that there was no statistically significant difference between our study groups in terms of age and sex. (P > 0.05). Besides, in patients, receiving lovastatin the CRP, IL-6, IL-8 levels were significantly decreased from T1 to T3 than to the control group. Our results also showed that the use of lovastatin in COVID-19 patients significantly reduced the length of hospitalization in the ICU compared with the control group. In addition, our results showed that the mortality rate in patients receiving lovastatin was lower when compared to the control group; however, this difference was not statistically significant. Since the cytokine storm is a significant factor in the pathology of SARS-CoV-2, our findings highlighted the potential use of lovastatin to mitigate the inflammatory response induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Lovastatin/pharmacology , Adult , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , Case-Control Studies , Critical Care/methods , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/drug therapy , Cytokines/drug effects , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-6/metabolism , Interleukin-8/metabolism , Lovastatin/therapeutic use , Male , Middle Aged , Receptors, Immunologic/metabolism , Sex Factors
19.
J Clin Immunol ; 41(7): 1607-1620, 2021 10.
Article in English | MEDLINE | ID: covidwho-1298388

ABSTRACT

The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein-protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.


Subject(s)
Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Complement C3a/metabolism , Complement C5a/metabolism , Coronavirus Infections/diagnosis , Interleukin-8/metabolism , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Aged , Biomarkers/metabolism , Complement C3a/genetics , Complement C5a/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Female , Humans , Interleukin-8/genetics , Male , Middle Aged , Prognosis , Severity of Illness Index , Survival Analysis , Up-Regulation
20.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: covidwho-1244042

ABSTRACT

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.


Subject(s)
Coronavirus Infections/metabolism , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/metabolism , Interleukin-8/metabolism , Unfolded Protein Response/genetics , Alphacoronavirus/metabolism , Alphacoronavirus/pathogenicity , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gammacoronavirus/metabolism , Gammacoronavirus/pathogenicity , Gene Expression Regulation , Humans , Immunity, Innate , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-8/genetics , Phosphorylation , Porcine epidemic diarrhea virus/metabolism , Porcine epidemic diarrhea virus/pathogenicity , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Up-Regulation , Vero Cells , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL